962 research outputs found

    Preterm infants' limb-pose estimation from depth images using convolutional neural networks

    Get PDF
    Preterm infants' limb-pose estimation is a crucial but challenging task, which may improve patients' care and facilitate clinicians in infant's movements monitoring. Work in the literature either provides approaches to whole-body segmentation and tracking, which, however, has poor clinical value, or retrieve a posteriori limb pose from limb segmentation, increasing computational costs and introducing inaccuracy sources. In this paper, we address the problem of limb-pose estimation under a different point of view. We proposed a 2D fully-convolutional neural network for roughly detecting limb joints and joint connections, followed by a regression convolutional neural network for accurate joint and joint-connection position estimation. Joints from the same limb are then connected with a maximum bipartite matching approach. Our analysis does not require any prior modeling of infants' body structure, neither any manual interventions. For developing and testing the proposed approach, we built a dataset of four videos (video length = 90 s) recorded with a depth sensor in a neonatal intensive care unit (NICU) during the actual clinical practice, achieving median root mean square distance [pixels] of 10.790 (right arm), 10.542 (left arm), 8.294 (right leg), 11.270 (left leg) with respect to the ground-truth limb pose. The idea of estimating limb pose directly from depth images may represent a future paradigm for addressing the problem of preterm-infants' movement monitoring and offer all possible support to clinicians in NICUs

    Healthcare costs for treating relapsing multiple sclerosis and the risk of progression: a retrospective Italian cohort study from 2001 to 2015

    Get PDF
    Background Disease modifying treatments (DMTs) are the main responsible for direct medical costs in multiple sclerosis (MS). The current investigation aims at evaluating possible associations between healthcare costs for treating relapsing remitting MS (RRMS) and disease evolution. Methods The present cohort study retrospectively included 544 newly diagnosed RRMS patients, prospectively followed up for 10.1±3.3 years. Costs for DMT administration and management were calculated for each year of observation. Following clinical endpoints were recorded: time to first relapse, 1-point EDSS progression, reaching of EDSS 4.0, reaching of EDSS 6.0, and conversion to secondary progressive MS (SP). Covariates for statistical analyses were age, gender, disease duration and EDSS at diagnosis. Results At time varying Cox regression models, 10% increase in annual healthcare costs was associated with 1.1% reduction in 1-point EDSS progression (HR = 0.897; p = 0.018), with 0.7% reduction in reaching EDSS 6.0 (HR = 0.925; p = 0.030), and with 1.0% reduction in SP conversion (HR = 0.902; p = 0.006). Conclusion Higher healthcare costs for treating MS have been associated with a milder disease evolution after 10 years, with possible reduction of long-term non-medical direct and indirect costs

    The babyPose dataset

    Get PDF
    none5noThe database here described contains data relevant to preterm infants' movement acquired in neonatal intensive care units (NICUs). The data consists of 16 depth videos recorded during the actual clinical practice. Each video consists of 1000 frames (i.e., 100s). The dataset was acquired at the NICU of the Salesi Hospital, Ancona (Italy). Each frame was annotated with the limb-joint location. Twelve joints were annotated, i.e., left and right shoul- der, elbow, wrist, hip, knee and ankle. The database is freely accessible at http://doi.org/10.5281/zenodo.3891404. This dataset represents a unique resource for artificial intelligence researchers that want to develop algorithms to provide healthcare professionals working in NICUs with decision support. Hence, the babyPose dataset is the first annotated dataset of depth images relevant to preterm infants' movement analysis.openMigliorelli L.; Moccia S.; Pietrini R.; Carnielli V.P.; Frontoni E.Migliorelli, L.; Moccia, S.; Pietrini, R.; Carnielli, V. P.; Frontoni, E

    Violation of particle number conservation in the it GW approximation

    Get PDF
    We present a nontrivial model system of interacting electrons that can be solved analytically in the GW approximation. We obtain the particle number from the GW Green's function strictly analytically, and prove that there is a genuine violation of particle number conservation if the self-energy is calculated non-self-consistently from a zeroth order Green's function, as done in virtually all practical implementations. We also show that a simple shift of the self-energy that partially restores self-consistency reduces the numerical deviation significantly

    Bioactive Phenolic Compounds From Agri-Food Wastes : An Update on Green and Sustainable Extraction Methodologies

    Get PDF
    Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed

    Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!

    Get PDF
    The G-quadruplex-forming VEGF-binding aptamer V7t1 was previously found to be highly polymorphic in a K+-containing solution and, to restrict its conformational preferences to a unique, well-defined form, modified nucleotides (LNA and/or UNA) were inserted in its sequence. We here report an in-depth biophysical characterization of V7t1 in a Na+-rich medium, mimicking the extracellular environment in which VEGF targeting should occur, carried out combining several techniques to analyse the conformational behaviour of the aptamer and its binding to the protein. Our results demonstrate that, in the presence of high Na+ concentrations, V7t1 behaves in a very different way if subjected or not to annealing procedures, as evidenced by native gel electrophoresis, size exclusion chromatography and dynamic light scattering analysis. Indeed, not-annealed V7t1 forms both monomeric and dimeric G-quadruplexes, while the annealed oligonucleotide is a monomeric species. Remarkably, only the dimeric aptamer efficiently binds VEGF, showing higher affinity for the protein compared to the monomeric species. These findings provide new precious information for the development of improved V7t1 analogues, allowing more efficient binding to the cancer-related protein and the design of effective biosensors or theranostic devices based on VEGF targeting

    Spinal cord atrophy in a primary progressive multiple sclerosis trial: Improved sample size using GBSI

    Get PDF
    Background: We aimed to evaluate the implications for clinical trial design of the generalised boundary-shift integral (GBSI) for spinal cord atrophy measurement. / Methods: We included 220 primary-progressive multiple sclerosis patients from a phase 2 clinical trial, with baseline and week-48 3DT1-weighted MRI of the brain and spinal cord (1 × 1 × 1 mm3), acquired separately. We obtained segmentation-based cross-sectional spinal cord area (CSA) at C1-2 (from both brain and spinal cord MRI) and C2-5 levels (from spinal cord MRI) using DeepSeg, and, then, we computed corresponding GBSI. / Results: Depending on the spinal cord segment, we included 67.4–98.1% patients for CSA measurements, and 66.9–84.2% for GBSI. Spinal cord atrophy measurements obtained with GBSI had lower measurement variability, than corresponding CSA. Looking at the image noise floor, the lowest median standard deviation of the MRI signal within the cerebrospinal fluid surrounding the spinal cord was found on brain MRI at the C1-2 level. Spinal cord atrophy derived from brain MRI was related to the corresponding measures from dedicated spinal cord MRI, more strongly for GBSI than CSA. Spinal cord atrophy measurements using GBSI, but not CSA, were associated with upper and lower limb motor progression. / Discussion: Notwithstanding the reduced measurement variability, the clinical correlates, and the possibility of using brain acquisitions, spinal cord atrophy using GBSI should remain a secondary outcome measure in MS studies, until further advancements increase the quality of acquisition and reliability of processing

    Observational case-control study of non-invasive ventilation in patients with ARDS

    Get PDF
    Background. The application of non-invasive pressure support ventilation (NIPSV) in patients with acute lung injury or ARDS remains controversial despite recent promising results. Data in rather homogeneous ARDS groups is lacking. Objective. To compare the outcome of NIPSV-treated patients satisfying the diagnostic criteria for primary (pulmonary) ARDS (ARDSp) and presenting without distant organ failures at admission, with those of a matched control group treated in the same ICU with endotracheal mechanical ventilation (ETMV). Methods. We applied NIPSV in 12 immunocompetent and collaborative patients who met the above cited criteria. NIPSV failure rate, short-term oxygenation, length of stay, mortality rate and complications were analyzed and compared with a control group of 12 intubated ARDSp-patients matched for age, SAPS II, PaO2/FiO2 and pH at admission. Results. NIPSV failed in 4 patients developing distant organ failures. Compared to the ETMV control group, NIPSV success patients had reduced cumulative time on ventilation (p = 0.001) and length of ICU stay (p = 0.004). After the first 60’ of ventilation, oxygenation improved more in the NIPSV than in the ETMV group (146 ± 52 mmHg vs 109 ± 34 mmHg; p = 0.05). The overall ICU mortality rate did not differ significantly between the groups but tended to be higher in the NIPSV group. Conclusions. In ARDSp patients without distant organ failures at admission and during the disease course, NIPSV might be a suitable alternative to invasive ventilation; however, the real effects on outcome of NIPSV applied to stable homogeneous subgroups of ARDS patients merit further investigations in randomised studies
    • …
    corecore